INDEX

Α	PIMT overexpression and levels,
Advanced glycation endproducts	102–103
(AGEs), 97	selective methylation, 103
Alzheimer's disease (AD)	autistic spectrum disorders and, 123–124
APP and, 114	blood pressure and, 124
cell culture studies, 115	cancer and, 121–122
glycoxidation events, 114–115	cataractogenesis, 120–121
Amyloid precursor protein (APP), 114	corticosteroids, 109–110
imiyada preedisor protein (in 1), iii	deafness and, 121
В	deleterious effects, 131
В	diabetes
Buffer model system, 68	AGE formation, 111
	cardiac and circulatory disorders, 110
С	complications, 112
	dialysis fluids, 125–126
Caloric restriction (CR), 103	dietary changes, 129–130
Carnosine	fructose foods and drinks, 125
age-related pathology, 110, 111	gene expression, 100-101
aging	heart failure, 123
causes, 94	homeostatic properties, 92, 93
mechanisms and antiaging activities,	immune function and, 122-123
95–96	ischemia, 119–120
protein synthesis regulation, 108–109	metabolic regulations, 91
proteotoxicity, 95	neurodegenerative diseases
aging, dietary restriction-mediated delay	features, 113
ADP-ribose metabolism, 104	neurotoxic agents, 112–113
AGEs, 105	neurotoxic effects, 113-114
cAMP levels, 107	neurological functions, 91
fasting periods, 103	nonenzymic protein glycosylation
mitochondria synthesis, 108	antiaging/rejuvenating effects,
NAD consumption and availability,	97–98
106	browning reaction, 97
NAD ⁺ /NADH levels, 104–105	carbonyl compounds, 98
alcoholic beverages consumption,	glucose degradation products, 99
124–125	osteoporosis, 120
altered proteins, 99–100	oxygen free radicals and oxidative stress,
Alzheimer's disease	96–97
causing events, 114	Parkinson's disease
cell culture studies, 115	ATP synthesis, 116
CSF homocarnosine levels, 114-115	dopaminergic neurons, 116
dementia, 116	dopamine supply, 118
anserine concentrations, 90	L-dopa therapy, 118–119
anticonvulsants and aging	pH control, 92
isoaspartate residues, 102	structures, 89

Carnosine (cont.)	neighbor-joining (NJ) trees, 28
tissue levels	species identification, 26
dietary supplementation, 128-129	escolar and oilfish
physiological regulation, 126-128	biology, 6–8
tissues and functions, 92	chemistry and cooking effect, 8
vegetarian diets, 130–131	global concerns, 14–15
wound healing and, 122	harmful effects, 9
zinc and copper ions, 93	litigation, 15, 18
Castor-oil fish, 19	mislabeling and mishandling, 13–14
Cellulose acetate membrane electrophoresis	policies on, 16–17
(CAME), 25–26	regulation, 15
Cerebral spinal fluid (CSF)	supply, 11–13
AD patients, 130	uses, 9–11
homocarnosine levels, 114–115, 130	food-poisoning, 40
protein AGEs, 114	labeling, 41
Chill haze, 57	lipid analysis
CR. See Caloric restriction	escolar and oilfish, fatty acids, 27
CSF. See Cerebral spinal fluid	TLC, 27–30
D	morphological and anatomical analyses, oilfish
Dermatitis herpetiformis	characteristic integument, 24–25
celiac disease	escolar sashimi and cutlets, 26
gluten-free diet, 255, 279	fillet and cutlets, 24
oats safety, 238, 258–270	musculature, 23–24
in vivo clinical studies, 239–244,	poisoning, 3
250–252	protein analysis, 25–26
description, 237	reports and symptoms
Diacylglyceryl ether (DAGE)-rich fish	in continents, 3–4
S. maculatus lipid analysis, 39	diarrhea, 6
species, 40	escolar, oil discharge, 4
Dimethylformamide (DMF), 66	gastrointestinal illness, 4, 6
(// * *	oilfish and escolar, consumption, 5
E	outbreaks of, 3–4
E 1 1 (1 1 (EMA) 252 254	risk assessment and education
Endomysial antibody (EMA), 273, 274	public and health professionals, 41
F	seafood and catering industry, 41–42
ı	sources, 2–3
Fish-induced keriorrhea	warnings and handling, 42-43
animal study, 40–41	wax-ester-rich fish
biochemistry and toxicity	epipelagic species, 30, 32
animal tests, 21–22	functional differences, 39
castor-oil fish, 19	Gempylidae family, 30
escolar consumption, 21	lipid components, 38–39
human studies, 22–23	orange roughy, 32, 38
muscle oil, 20–21	species, 33–37
wax esters, 18–20	Food deep-fat frying
DAGE, 39–40	heat transfer
description, 3	characterization, 214-215
detection and inspection	coefficients, boiling convective, 216-217
authentication methods, 43	rates, 215–216
government actions, 44	water evaporation, 214
DNA analysis	mass transfer characteristics, 214

nutritional aspects	phyllosphere, 179–180
consumption and human health,	rhizosphere, 180-181
220–221	production growth, 156
fat absorption, 218–219	Fresh produce safety
frying oils and oil degradation, 219-220	HPP, 190
oil absorption	human pathogens control, 191-192
affecting factors, 226–229	irradiation, 189–190
kinetics of, 222–226	postharvest washing, 188
reduction, 229-231	surface pasteurization, 189
oil location after, 223	UV light, 190–191
process	Frying equipment
definition, 210	automatic basket-lift system, 212
fried food, 212	continuous fryers, 213
frying equipment, 212–214	deep-fat fryers, 213–214
heat and mass transfer, 211	
technology, food industry, 211–212	G
temperatures, 210–211	
structure development	Gas chromatography. See Thin-layer
crust and core regions, 217	chromatography (TLC)
	Gempylidae family
fried potato, oil location, 218	characteristics, 30
oil absorption mechanisms, 217–218	species, 31–32
surface tension, oil, 225–226	
Fraunhofer theory, 56	H
Fresh fruits and vegetables, microbial safety	Haza active (HA) malymbanala
foodborne illness outbreaks	Haze-active (HA) polyphenols
deficiencies, 160	beverage in, 74
fresh produce, 157–158	binding energy, 63
Salmonella and E.coli, 159	flavan-3-ols
human pathogens, vegetable production	(+)-catechin and (–)-epicatechin
chain	structure, 63–64
irrigation water, 171–175	gallocatechin and epigallocatechin
manure and biosolids, 169–171	structure, 65
soil, 176–177	proanthocyanidins, 64–65
transport, 177–179	structure, 63
interventions	prominent dimer structure, 66–67
HPP process, 190	response surface model, 68
human pathogens biocontrol, 191–192	Haze-active (HA) protein
irradiation, 189–190	beer, silica binding, 79
postharvest washing, 188	beverage in, 74
surface pasteurization, 189	foam active effects and, 78
UV light, 190–191	haze-forming activity, 60-61
MAP packaging, 157	hydroxyproline, 61–62
pathogens characteristics	peptide bond, 62–63
bacteria and symptoms, 161–162	PRPs, 61
endospore-forming bacteria, 166–167	response surface model, 68
enteric viruses, 167	Haze, beverages
human pathogenic protozoa, 167-168	causes
pathogenic <i>E. coli</i> , 160–166	grape juice, wine and grains, 58
pathogens interaction, fresh produce	microorganisms and sucrose syrups
genetic and physiological factors,	58–59
186–188	polysaccharides and proteins, 59
internalization, 181–186	diagnosis
	4110010

Haze, beverages (cont.)	I
chemical analysis and enzyme	Intro onith olial lymph a system counts (IEI a)
treatment, 60	Intraepithelial lymphocyte counts (IELs)
microscopy, 59-60	duodenal counts, 264
formation, protein-polyphenol, 73-74	intestinal biopsies, 265
HA polyphenol, 75–76	oat-consuming and control groups, 258
haze tests and HA protein, 75	T cell receptors, 270
HA polyphenols	Invisible hazes, 56
dimer structure, 66–67	invisible impes, so
flavan-3-ols, 63–64	L
molecular features, 63	
proanthocyanidins, 64–65	Localized induced resistance (LIR), 186
HA protein amino acids and DNA code, 61–62	
barley hordein amino acid sequence, 61	M
codes, proline vs. amino acids, 62–63	Magnitude estimation (ME), 57
polyphenol and, 74	Microbial source tracking (MST), 178
proline, 60–61	Mie theory, 56
particle size effects	•
haze intensity and, 70–71	N
sedimentation and filtration	Nephelometric turbidity units (NTU), 57
operations, 72	Norwalk-like viruses (NLV), 167
pH and alcohol effects	TVOTWARK TIKE VITABLES (TVE V), 107
ethanol concentration, 72	О
haze intensity, 72–73	0
physics in	Oats, celiac disease
calibration, turbidimeter, 56–57	benefits, 261
Mie theory, 56	dermatitis herpetiformis, 238
photometer, light scattering, 54–55	diagnosis, 237–238 gluten
temperature, 57	description, 237
turbidimeter light path, 55–56	free diet, 254, 261
polyphenol polymerization mechanisms, 74	intake, 238
prevention	nonpivotal <i>in vitro</i> studies
adsorbents, 77–80	avenins, immunogenic effect, 277–278
cold maturation, 76–77	dietary challenges, 245-249
enzymes, 80–81	duodenal mucosal cultures, 254,
ultrafiltration, 77	274–277
protein-polyphenol interaction	peripheral lymphocyte, 255
conceptual model, 68–70	serology, 255, 278
gliadin and TA, 70	pivotal in vivo studies
haze formation, 66–67	adults and children, 250–252
hydrophobic and hydrogen	challenge group, gluten, 273–274
bonding, 67–68	contamination, 266–267
influence concept, 69	controlled intervention, 265–266
mechanism, 65–66	dermatitis herpetiformis, 240–244,
surface models, 68	250–252, 264–265 double blind study, 271–272
visual perception	duodenal biopsies, 264
suprathreshold particle, 57–58	gastrointestinal symptoms,
thresholds determination, 57	252–254, 269
High hydrostatic pressure (HPP), 190 Hypersensitive response (HR), 186	gliadin contamination, 271
11) persensitive response (1110), 100	0

gluten contamination, 263	P
immunological responses, 269–270 intolerance, 267	Parkinson's disease (PD)
•	ATP synthesis, 116
kilned and unkilned, 270–274	carnosine treatment, 118
long-term ingestion, 266	mitochondrial dysfunction, 116
mass spectrometry (MS), 266	Pathogens
patients group, 262–263 uncontaminated rolled oats, 266	bacteria and symptoms, 161–162
urinalysis test, 272	endospore-forming bacteria, 166–167
villous architecture, 264	enteric viruses, 167
potential toxicity	human pathogenic protozoa, 167–168
avenins, 260–261	internalization, growing plants
gliadins and glutenins, 260	culturing techniques, 185
gluten, 259–260	methods, 181–183
pure oats, 261–262	postharvest washing, 181
retrospective evaluation, 279	pathogenic <i>E. coli</i>
safety	Aeromonas hydrophila, 166
in adults, 252	Campylobacter, 165
assessment, 239	Listeria monocytogenes, 166
biopsy, 259	Salmonella, 164–165
in children, 252–253	Shigella, 164
database differences, 258	types, 163 Postin methyltransferase (PMT) 100
IELs and, 259–260	Pectin methyltransferase (PMT), 190
Oil absorption	Peptic-tryptic (PT) digest, 270 Phyllosphere, 179–180
affecting factors	Polyacrylamide gel electrophoresis (PAGE),
crust microstructure, 226–227	25–26
food surface area, 227	Polyphenol adsorbents, 78
frying temperature and time,	Polyvinylpyrrolidone (PVPP)
227–228	action, beer, 81
moisture content, 226	binding, 78–79
oil type and deterioration, 228–229	segment structure and usage, 80
kinetics of	Proline-rich proteins (PRPs), 61
cooling, oil suction, 223–224	Protein-isoaspartate-methyltransferase
fractions and mechanism, 222–223	(PIMT), 102
penetration, 222	n.
physical and chemical properties,	R
225–226	Reactive nitrogen species (RNS), 88, 99
postfrying cooling, 224–225	Reactive oxygen species (ROS), 88, 96
wetting properties, 225	Rhizosphere, 180–181
reduction	
coatings and batters, 230	S
drying, 229	12S rRNA gene sequences, 28
hydrocolloids and thermal gelling,	Surfactant theory of frying, 17
229–230	Systemic acquired resistance (SAR), 186
postfrying treatments, 230–231	c) (e,
Orange roughy deep-sea fish	T
wax esters, 19	TTI: 1 1 (TTI C) 1
animal tests, 22	Thin-layer chromatography (TLC), escolar
potential hazards, 32	and oilfish
Oxidation-reduction potential	differentiation, 28–29
(ORP), 188 Oxidized protein hydrolase (OPH), 100	characteristic spot, 29–30 wax esters levels, 27–28
Orialized protein hydroidse (Of 11), 100	was esters ievers, 27–20

V	description, 18
Wegetable production chain enteric pathogens, 168 human pathogens library-independent approaches, 179 movement, 177 subsurface discharge waters, 178 water contamination, 178–179 irrigation water crop production, 171 <i>E.coli</i> levels, 172 enteric pathogens, 174 human pathogens, 175 recycling, 172–173 manure and biosolids <i>E. coli</i> , 170 organic cultivation systems, 169 sewage waste, 169–170	detection of, 14 epipelagic fish species, 30, 32 fatty acids, 27 fish species, 33–37 gempylotoxin, 9 gravities and viscosities, 32 lipase hydrolysis, 19–20 long chain, classification, 27 in muscles and roes, 39 orange roughy fillet, 38 levels of, 32, 38 storage in, 19 roe oil, 38–39 seborrhea, 21–22 source of, 18–19 structure, 18 thin-layer chromatography (TLC)
soil, 176–177	application, 27–28 fatty acids and alcohols, 29
W	characteristic spot, 29–30
Washburn equation, 224	use, 28–29
Wax esters	toxicity, 21
animal tests, 22	variability, 20–21
DAGE, 39-40	vertical migration, 19